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Abstract
Categorial grammar (CG) is a lexicalized
grammar formalism that can be used to iden-
tify and extract the semantics of natural lan-
guage sentences. However, despite being used
actively to solve natural language understand-
ing tasks such as natural language inference
or recognizing textual entailment, most of the
tools exploiting the capacities of CG are avail-
able in a limited set of languages. This pa-
per proposes a first step toward developing
a set of tools enabling the use of CG for
the French language by proposing a neural
network tailored for part-of-speech and type-
logical-grammar supertagging, located at the
frontier between computational linguistics and
artificial intelligence. Experiments show that
our model can compete with state-of-the art
models while retaining a simple architecture.

1 Introduction

Categorial grammar (CG) is a formalism whose
foundations come from Ajdukiewicz (1935) and
Bar-Hillel (1953). From there, we can find two
major lines of research that were created, namely,
combinatory CG (CCG) (Steedman, 2000) and
type-logical grammar (TLG) (Moortgat, 1997;
Morrill, 1994) which itself can be divided into two
subtheories, namely, displacement calculus (Mor-
rill et al., 2011) and multi-modal CG (Moortgat,
1997). Other theories that build upon those theo-
ries also exist, such as hybrid TLCG (Kubota and
Levine, 2020) and abstract CG (de Groote, 2001).

Using these syntactic theories offers knowledge
about each word passed in an input sentence. Us-
ing the appropriate resources, the great amount
of information provided by a supertag (Bangalore
and Joshi, 1999) attributed to a given word in a
sentence can be parsed efficiently to solve natu-
ral language understanding tasks such as natural
language inference or recognizing textual entail-
ment. This syntax-semantic interface can then be

used by machines in order to answer various kinds
of challenges, such as question answering and text
summarization.

The continuous development of CCG and TLG
led to the progressive appearance of several anno-
tated corpora in various languages, such as Ger-
man (Hockenmaier, 2006), Italian (Bos et al.,
2009), Japanese (Uematsu et al., 2013), and
of course English (Hockenmaier and Steedman,
2007). However, the number of treebanks and
tools is very limited for the French language. Be-
cause CG has a close affinity to lambda calculus,
logic, and natural deduction proofs, we are moti-
vated to develop the current state-of-the-art in this
field for the French language.

In this work, we propose a simple supertag-
ger for part of speech (POS) and TLG tagging
by exploiting the capacities of deep bidirectional
encoder representation from transformers (BERT)
(Devlin et al., 2018) for unlabeled input sentences.
We demonstrate that integrating into our archi-
tecture a small long short-term memory (LSTM)-
based variational autoencoder (VAE) while adapt-
ing the training pipeline allows us to increase the
word-wise supertagging accuracy of our model.
We also show experimentally that joining the
training of both POS and TLG supertagging offers
slightly increased overall accuracy while reducing
the accuracy of tags seen rarely during training.

2 Related works

French TLG and POS supertagging The TL-
Gbank (Moot, 2015) is a type-logical treebank for
French, developed from the French Treebank, a
lexical and syntactic resource by Abeillé et al.
(2003). Because both corpora have been manually
verified and rectified by their respective authors,
they can be considered as the gold standard for
French CG. Alongside his TLGbank, Moot pre-



sented the supertagger DeepGrail,1 which is an
LSTM layer that uses ELMo (embeddings from
language models) vector embeddings of the unla-
beled input data. This model successfully assigns
93.2 percent of words their correct TLG formula
and presents an accuracy of 99.1 percent of cor-
rect POS supertags.

Since then, state-of-the-art TLG supertagging
of this treebank has been achieved by Kogkalidis
and Moortgat (2022) with an accuracy of 95.92
percent. Their approach revisits traditional models
by proposing a framework based on heterogeneous
dynamic graph convolutions and by decomposing
the structure of the supertags. By doing so, they
presented novel accuracy results on supertags that
were rarely seen during the training phase. This
generalization effort motivated us to explore dif-
ferent ways to regularize our architecture without
losing overall model accuracy.

CamemBERT Our approach is built around the
use of CamemBERT (Martin et al., 2020), which
is a fine-tuned RoBERTa model (Liu et al., 2019)
for French, which itself is based on BERT (De-
vlin et al., 2018). This model is attractive for the
French language because it uses a subword tok-
enization where each word is divided, so it can ex-
ploit the numerous inflections that appear in the
French language. In the study reported herein,
we found only a few differences between the
experimental results of CamemBERTBASE and
CamemBERTLARGE models. Therefore, for the
sake of computing speed and efficiency, we used
only CamemBERTBASE in our model because its
architecture is three times smaller than its other
version.

3 TLG and POS supertagger model

In this section, we describe the training data and
procedure and present the different modules of our
model.

3.1 Training data

We manually split the TLGbank with a fixed seed
into train/dev/test splits at a ratio of 80:10:10 to
have comparable results with the network pro-
posed by Kogkalidis and Moortgat (2022). For
each word, the corpus presents its TLG and French
POS supertags, allowing us to test several versions

1https://richardmoot.github.io/
DeepGrail/

Class Frequency Number of words
Frequent n ≥ 100 43,861
Uncommon 100 > n ≥ 10 761
Rare 10 > n ≥ 1 139
Unseen n = 0 21

Table 1: Supertag classes statistics of the TLGbank.

of our network using solely the 14,521 parsed sen-
tences of the treebank (411,520 words).

CGs such as TLG often suffer from a large num-
ber of possible supertags. To evaluate the regu-
larization power of our architecture, we group the
tags into four classes based on their frequency of
appearance in our training split. Table 1 shows
the supertag class names, frequency of tags in the
train split, and number of different words whose
supertag is in this class.

Because POS supertags do not share the same
sparsity as TLG supertags (<30 different tags for
the French MElt POS tagset), we report only the
overall accuracy on this task.

3.2 Model architecture

We develop each part of the model presented in
Figure 1 before presenting how the different mod-
ules were combined and evaluated. For simplicity,
we call the model VAEoTL (variational autoen-
coder over transfer learning).

CamemBERT CamemBERT was trained orig-
inally on the masked language modeling task.
Thus, we fine-tune CamemBERTBASE during the
training phase while only removing its original
head in a classical transfer-learning fashion. For
each phase of training described in Section 3.3, the
learning rate of CamemBERT is 10 times lower
than for the rest of the model in order not to
waste its pre-training. CememBERT’s subword
tokenization requires us to adapt the output size.
Because we attribute only one supertag per word
(and not per subword), we adapt the training data
by attributing the supertag to the first subpart of
each word and by padding the other subparts. Ac-
curacy is thus evaluated using a simple mask re-
moving this padding.

BiLSTM A single-layered bi-directional LSTM
(BiLSTM) is used after the CamemBERT layer. It
is a recurrent network that combines two LSTMs:
one reading the sentence from left to right, and one
reading the sentence from right to left, thus ex-
tracting for each input information coming from
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its neighbors on both sides.

VAE With the goal of regularizing our network
in mind, we tried to add a VAE to our architec-
ture. This module allows us to approximate the
output distribution of the BiLSTM by encoding it
to a latent space, before decoding it to reconstruct
the aforementioned outputs. Doing so allows us to
regularize the BiLSTM outputs and to increase the
supertagging accuracy, specifically over rare tags.
Internally, the encoder and decoder of the VAE
module are both composed of BiLSTM linked by
dense layers to the latent space. In our case, a la-
tent space of size 200 was the best compromise
between speed and efficiency in the final model.

However, integrating this module requires
adapting the training procedure because it requires
the previous layers to be pre-trained. We differ-
entiate our procedure into three distinct phases as
described later in Section 3.3.

Dense+CRF heads The final output of our neu-
ral network is tagged by a simple dense layer map-
ping the hidden dimensions to tagset space in or-
der to produce probability emission for each pos-
sible supertag. However, applying a simple soft-
max activation function to such emissions would
imply that each tag is conditionally independent
of its neighbor, which is in sharp contrast to the
nature of CGs.

While the softmax activation allows us to dis-
tribute the probability for each supertag to be cho-
sen given an input word, it sometimes fails to mod-
elize the relationship between adjacent supertags.
Instead, we use a conditional-random-field layer
(Lafferty et al., 2001), a discriminative model that
finds the Viterbi path maximizing the probability
of a sequence of possible supertags given an in-
put sequence. This effectively considers the con-
text around each supertag while allowing us to use
a simple forward-backward algorithm to compute
the negative log-likelihood between network emis-
sions and target outputs.

Two different heads are required because we
want to evaluate both the TLG and French POS
supertagging tasks. We experimented on two pos-
sible applications of this model: single-headed or
multi-headed. In the former, we train only a single
head at once, thus dedicating the whole architec-
ture to a single task. In the latter, we share the
training of the previous layers between each task,
on the hypothesis that overall accuracy should im-

Figure 1: Architecture of the network

prove because only the most relevant features will
be learned, thereby effectively preventing overfit-
ting.

3.3 Training procedure

For its training, the VAE module requires an
adapted negative log-likelihood with regularizer
and to have its previous layers sufficiently trained.
Accordingly, we define three distinct phases to our
training. The first phase (20 epochs) does not use
the VAE module at all, because we do not wish
to approximate the outputs of an untrained model.
In the second phase, we remove the heads of the
model and freeze the training of CamemBERT and
the BiLSTM layers in order to train the VAE for 10
epochs, using the mean squared error as a recon-
struction criterion added to the Kullback–Leibler
divergence in order to compute the loss. In the fi-
nal phase, we unfreeze all layers and fine-tune the
whole model for 10 epochs.

3.4 Implementation

We implement our model using PyTorch,2 which
provides an easy-to-use-and-adapt interface to
construct our model, alongside Huggingface,3

from which we accessed the CamemBERT model.
2https://pytorch.org/
3https://huggingface.co/
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Model Overall Frequent Uncommon Rare Unseen
ELMo & LSTM (Moot, 2015)1 93.20 95.10 75.19 25.85 0.0

Phase 1 Single-head 95.47 95.90 81.20 41.30 0.0
Phase 1 Multi-head 95.57 96.00 83.57 28.78 0.0
Final Single-head 95.58 96.00 81.20 45.19 0.0
Final Multi-head 95.66 96.13 83.04 28.78 0.0

HDC (Kogkalidis and Moortgat, 2022)1 95.92 96.40 81.48 55.37 7.26

Table 2: Model performance in percent for each category of tags (average over five runs). HDC stands for heterogeneous
dynamic convolutions. 1Reported results from the cited paper.

For each phase, we use a different Adam optimizer
with β = (0.9, 0.999), no weight decay, and a
learning rate of 10−4 fading to zero with polyno-
mial decay. To regularize the outputs, 40 percent
dropout is added during training.

4 Results

In Table 2, we present the wordwise supertagging
accuracy compared to the state-of-the-art results
published by Kogkalidis and Moortgat (2022) in
TLG supertagging. Although our model did not
surpass the state of the art, we proved its efficiency
despite its simplicity.4 The first training phase is
enough to reach high accuracy, but we observe that
adding a VAE module still allows us to improve
our accuracy, specifically over rare tags.

We observe that sharing the training between
TLG and POS supertagging allows us to improve
overall accuracy while sacrificing rare-tags accu-
racy. This is because the model will learn the
underlying correlation between both types of su-
pertags, thus reducing the probability of picking
rare TLG supertags knowing the POS supertag of
the same word.

Further investigations using this architecture are
needed in future work to prove the efficiency of
this model. However, its simple nature offers
the opportunity to manipulate and adapt it easily,
whether by modifying its structure or by simply
adding new heads tailored to specific tasks.

Table 3 presents our results on the POS su-
pertagging task compared to MElt tagger results
reported by Denis and Sagot (2012). We ob-
serve that the model achieves state-of-the-art re-
sults, demonstrating that it can learn features rele-
vant for both TLG and POS supertagging.

4The software used is available at the following github
page for reproducibility of results: https://github.
com/gaetanmargueritte/ftlgsupertagger

Model Accuracy
MElt tagger (Denis and Sagot, 2012) 97.70

Phase 1 Single-head model 99.53
Phase 1 Multi-head model 99.57
Final Single-head VAEoTL 99.55
Final Multi-head VAEoTL 99.56

Table 3: Model performance in percent for French POS tag-
ging on the TLGbank.

5 Contributions and limitations

With the goal in mind to provide a tool allowing
to properly represent the syntax of input sentences
formulated in natural language, we hope that fu-
ture works will be able to extend the capacities
of this architecture in order to exploit this syntax-
semantic interface. While our model has not im-
proved the state of the art of French TLG supertag-
ging, it presents an accessible and simple fine-
tuning of existing transformer-based models. Its
modular architecture eases the adaptation of other
existing techniques such as beam search to obtain
more than a single prediction per word.

However, this model fails to modelize the in-
ternal structure of the syntactic types in the sense
that it does not learn to create new composed types
(N/N, S\NP) by assembling atomic types (N, NP,
S). The current state of the art presented by Kogka-
lidis and Moortgat (2022) solves this problem by
using a graph-theoretic perspective.

6 Conclusion

In this work, we investigated the different ways
to regularize and fine-tune a supertagger for the
French language, exploiting pre-trained unlabeled
word embedding and a customized procedure uti-
lizing a VAE architecture. We used a gold-
standard annotated corpus, TLGbank, to train a
simple and adaptable model able to compete with
the current state of the art of supertaggers. We
have shown experimentally that a VAE can be used
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to improve model regularization and that overall
accuracy can be improved by using a multi-headed
architecture.
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