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Abstract

Language researchers have long assumed that
concepts can be represented by sets of seman-
tic features, and have traditionally encountered
challenges in identifying a feature set that could
be sufficiently general to describe the human
conceptual experience in its entirety.

In the dataset of English norms presented by
Binder et al. (2016), also known as Binder
norms, they introduced a new set of neurobio-
logically motivated semantic features in which
conceptual primitives were defined in terms
of modalities of neural information processing.
However, no comparable norms are currently
available for other languages.

In our work, we built the Mandarin Chinese
norm by translating the stimuli used in the orig-
inal study and developed a comparable collec-
tion of human ratings for Mandarin Chinese.
We also conducted some experiments on the au-
tomatic prediction of the Chinese Norms based
on the word embeddings of the corresponding
words to assess the feasibility of modeling ex-
periential semantic features via corpus-based
representations.

1 Introduction

A longstanding research trend in semantics as-
sumes that the conceptual content of lexical items
can be decomposed into semantic features identi-
fying basic meaning components (Vigliocco and
Vinson, 2007). Such features represent semantic
primitives that can be present or absent in the se-
mantic representation of a lexeme, such as boy in
Example (1).

(1) boy [+MALE, -MATURE . . . ]

However, this type of view has some critical lim-
itations: First, discrete features are not suitable
to address the gradient prototypicality of feature-
to-concept associations (Murphy, 2002). Second,

these feature sets tend to be manually selected, and
are generally tailored to a few in vitro examples;
thus, they are unable to account for large portions
of the lexicon of natural languages (Chersoni et al.,
2021).

On one hand, featural representations have the
advantage of human interpretability, as they label
the dimensions of word meanings explicitly, and
provide explanatory factors for their semantic be-
havior; for example, the similarity between beer
and coffee can be explained by assuming that they
share the semantic feature of LIQUID. On the other
hand, this type of features is highly subjective, and
can only be collected through a time-consuming
process of elicitation from human subjects (e.g.
McRae et al. (2005); Vinson and Vigliocco (2008);
Devereux et al. (2014); Buchanan et al. (2019)).

An alternative was proposed by Binder et al.
(2016) using brain-based semantics based on
modalities of neural information processing. Af-
ter reviewing extensive evidence from studies of
human physiology, the authors proposed a dataset
of 535 words described in terms of 68 experien-
tial features, each of which was associated with a
specific neural processing in the neurobiological
literature. The features were categorized according
to 14 different domains of experience (Table 1).

The proposal by Binder et al. (2016) should nat-
urally extend to other languages: If the features are
genuinely neurobiologically motivated, it should
also be possible to use them to describe the essen-
tial meaning components of languages other than
English.1 However, to the best of our knowledge,
Binder-like norms are currently only available for
the English language.2

1See also the recent work of Blasi et al. (2022) on the need
for cognitive science studies to look beyond English, in order
to support claims of universality.

2A partial exception is represented by the collection of
ratings published by Wang et al. (2022); see Section 2.



Domain Type Domain Meaning components (features)

Sensory Vision VISION, BRIGHT, DARK, COLOUR, PATTERN, LARGE, SMALL, MOTION,
BIOMOTION, FAST, SLOW, SHAPE, COMPLEXITY, FACE, BODY

Sensory Somatic TOUCH, HOT, COLD, SMOOTH, ROUGH, LIGHT, HEAVY, PAIN
Sensory Audition AUDITION, LOUD, LOW, HIGH, SOUND, MUSIC, SPEECH
Sensory Gustation TASTE
Sensory Olfaction SMELL
Motor Motor HEAD,UPPER LIMB, LOWER LIMB, PRACTICE
Spatial Spatial LANDMARK, PATH, SCENE, NEAR, TOWARD, AWAY
Number Number NUMBER
Event Temporal TIME, DURATION, LONG, SHORT
Event Causal CAUSED, CONSEQUENTIAL
Event Social SOCIAL

Cognition Cognition HUMAN, COMMUNICATION, SELF, COGNITION
Evaluation Evaluation BENEFIT, HARM, PLEASANT, UNPLEASANT
Emotion Emotion HAPPY, SAD, ANGRY, DISGUSTED, FEARFUL, SURPRISED

Drive Drive DRIVE, NEEDS
Attention Attention ATTENTION, AROUSAL

Table 1: List of the domains and meaning components (features) in Binder et al. (2016).

Therefore, in our work, we adopted the same
design of Binder norms: We translated the words
in the Binder dataset into Mandarin Chinese, and
obtained ratings from human subjects for each of
the 68 Binder features per word in order to obtain
a comparable dataset. Moreover, we experimented
with regression algorithms to assess the extent to
which such norms could be predicted automatically
based on the text-derived embeddings of the corre-
sponding words.3

2 Related Work

Neurosemantic decoding research, initiated by the
seminal work of Mitchell et al. (2008), has the aim
of creating mappings between different concept
representations, typically from a corpus-derived
one (such as word embedding) to one derived from
human data (such as fMRI scans and semantic
norms). For example, previous studies used fMRI
data to learn mapping from the traditional count-
based distributional models (Devereux et al., 2010;
Murphy et al., 2012), including both count- and
prediction-based vectors (Bulat et al., 2017; Ab-
nar et al., 2018), and topic models (Pereira et al.,
2011, 2013); the same methodology has been used
to map word-embedding models onto feature (Fa-
garasan et al., 2015; Bulat et al., 2016; Derby et al.,
2019) and modality norms (Chersoni et al., 2020)
to ground the vectors in perceptual data and to
make them interpretable. Due to the grounding
on perceptual experience, the Binder features for
English have also been used for the same purpose

3Dataset and code for the experiments will be available at
the following URL: https://github.com/Laniqiu/
norming.

(Utsumi, 2018; Turton et al., 2020; Chersoni et al.,
2021). Notice that, differently from property norms
(McRae et al., 2005; Devereux et al., 2014), the col-
lection process is more constrained: the properties
of concepts are not freely elicited from human par-
ticipants; because the Binder features are a closed
set, the participants were asked to only rate the
relevance of a given feature for a given concept.

We are not currently aware of any other work that
has introduced Binder-like norms for languages
other than English. The recent work by Wang et al.
(2022) introduced a fMRI dataset for Mandarin
Chinese, together with a collection of Binder rat-
ings for the target words. However, their targets
differed from those in the original study by Binder
et al. (2016) (a total of 672 words from the Syn-
onymy Thesaurus of the Harbin Institute of Tech-
nology), and the representation was limited to 54
Binder features, as some of them were excluded
due to high levels of correlation with at least one
of the other features. With the aim of providing a
comparable and more comprehensive resource to
facilitate future experiments on the prediction of
crosslingual norms, we opted to retain the original
set of target words and features.

3 Data Collection

Binder et al. (2016) collected ratings for 68
cognitively-motivated features for 535 words in to-
tal.4 242 words were selected from the Knowledge
Representation in Neural Systems project (Glas-
gow et al., 2016), including 141 nouns, 62 verbs,

4In their paper, they used the feature label Temperature for
features Hot and Cold, Texture for Smooth and Rough, and
Weight for Light and Heavy, resulting in 65 feature categories.

https://github.com/Laniqiu/norming
https://github.com/Laniqiu/norming


Type-POS No. of items
Concrete Objects - Nouns 275

Living Things - Nouns 126
Other Natural Objects - Nouns 19

Artifacts - Nouns 130
Concrete Events - Nouns 60
Abstract Entities - Nouns 99
Concrete Actions - Verbs 52
Abstract Actions - Verbs 5

States - Verbs 5
Abstract Properties - Adjectives 13
Physical Properties - Adjectives 26

Table 2: Concept types, parts of speech (POS), and the
number of items in the dataset by Binder et al. (2016).

Word VISION BRIGHT ... COGNITION BENEFIT

公寓(gongyu) 5.56 3.82 ... 0.86 4.60
杏子(xingzi) 4.24 4.06 ... 1.34 3.34

Table 3: Sample of Binder vectors for the words gongyu
(apartment) and xingzi (apricot).

and 39 adjectives, while another 293 words were
added to include more abstract nouns. We adopted
the original set of 535 target words and 68 features
proposed by Binder et al. (2016), and the original
survey queries that they proposed. We translated
them into Mandarin Chinese using simplified char-
acters. This survey was used to elicit the ratings
for the salience of each attribute for each target
word, with the same 0-6 Likert scale used in the
original study (the higher the score, the higher the
relevance of a feature when one has to think about
the target concept, while 0 corresponds to “feature
not applicable to this concept”).

The target words and the survey queries were
translated by two native speakers of Mandarin, who
were Master’s students of linguistics. For features
and target words, we adopted their most common
and core sense in English to translate into their
corresponding Chinese. While some words in col-
loquial uses may have multiple senses, we selected
more specific words which were equally frequent
to the polysemous ones and to the sense expressed
by the English counterparts. We were aware that
the concept of “adjective” could sometimes not eas-
ily be recognized in Chinese, just as the function
of words in the -ed form can be ambiguous in En-
glish as either adjectival or verbal past participle.
When an adjective could be interpreted as other
parts of speech categories (POS), we added an ad-
jectival suffix -的 de to such adjectives to avoid
such potential confusion. The final version of the
survey queries and the target words were manually

checked by one of the authors, who is also a native
Mandarin speaker. The same POS of each word
were maintained for the 535 words, and each word
was associated with survey questions pertaining
to the 68 cognitively motivated features. One tar-
get word in the survey, banjo, was replaced for a
more culturally relevant musical instrument,二胡
erhu, while the other words were the same as their
English counterparts.

As is the case for the Binder norms, we adopted a
continuous rating design to obtain the attributes for
each word. We collected the data on a crowdsourc-
ing platform that is commonly used in China (问卷
星Wenjuanxing), because the rating results might
occur along a continuum and could be subjective
due to the speakers’ personal experiences and back-
grounds, thus, a larger sample size was considered
to be helpful in overcoming this issue. We obtained
8025 sets of ratings from the crowdsourcing survey;
each of the 535 targets obtained 15 sets of rating
results covering all 68 features. The demographics
and the language backgrounds of the participants
were checked before they participated in the survey.
Each participant received RMB$20 after complet-
ing the survey and once their results had passed the
survey’s attention checks.

After completing the survey, we measured the
Spearman correlation between English and Chi-
nese ratings. We found out that the ratings were
quite consistent across languages: on average, we
obtained a correlation of 0.68 across words and a
correlation of 0.59 across features.

4 Experiments

In order to learn to map between word-embedding
spaces and our Chinese Binder features, we trained
regression models using three different regressors,
namely Ridge Regression, Random Forest and Mul-
tilayer Perceptron (MLP) 5, using the ratings of the
68 features in the dataset as the dependent variables
and the dimensions of pretrained word-embedding
models as the independent variables.

Considering that the task requires mapping be-
tween word types that are taken out of context,
we decided to use static word-embedding mod-

5The regression models were implemented using Scikit-
learn (Pedregosa et al., 2011) with standard hyperparam-
eters. The only exception was the MLP, for which
we selected the following parameters after a parameter
search: hidden layer sizes=(50, 10), activation=’identity’,
early stopping=True, max iter=1000 (the other parameters
are the default ones).



Figure 1: Feature correlation scores by domain type (left) and word correlation scores by POS (right).

els: we used four different types of embeddings:
count-based sparse PPMI vectors (Church and
Hanks, 1990; Bullinaria and Levy, 2007) that were
trained on the Chinese Wikipedia (ppmi.wiki.zh;
Qiu et al. (2018)), Skip-Gram vectors (Mikolov
et al., 2013) that were trained on the Chinese
Wikipedia (sgns.wiki.zh, Qiu et al. (2018)), and
FastText vectors that were trained on the Chinese
Common Crawl (fast.cc.zh) or on the Chinese
Wikipedia (fast.wiki.zh) (Bojanowski et al., 2017)).
All the embedding models had 300 dimensions
as input features for the regressor, except for the
sparse PPMI vectors, which had 350k dimensions.
In addition, we initialized 300-dimensional random
vectors for all the words in the dataset, and used
them to train similar regression models as baselines
(Random). In future, we also plan to test contex-
tualized word embeddings (Devlin et al., 2019) in
the task, although it is worth pointing out that their
performance in out-of-context semantic tasks has
recently been shown not to differ significantly from
that of static models (Lenci et al., 2022).

Following Utsumi (2018), we adopted the leave-
one-out paradigm for data splitting: For each of
the n target words; we extracted one word out and
trained a regression model on the other n − 1 re-

Vectors Model Word Feature
fast.cc.zh Ridge 0.70 0.49
fast.cc.zh RandomForest 0.66 0.36
fast.cc.zh MLP 0.69 0.40

sgns.wiki.zh Ridge 0.66 0.44
sgns.wiki.zh RandomForest 0.63 0.33
sgns.wiki.zh MLP 0.66 0.38
fast.wiki.zh Ridge 0.68 0.47
fast.wiki.zh RandomForest 0.64 0.35
fast.wiki.zh MLP 0.69 0.44

ppmi.wiki.zh Ridge 0.25 0.03
ppmi.wiki.zh RandomForest 0.50 0.07
ppmi.wiki.zh MLP 0.15 0.03

Random Ridge 0.26 -0.01
Random RandomForest 0.51 -0.02
Random MLP 0.49 0.04

Table 4: Word and Feature Spearman correlation for all
regression models (top scores are in bold).

maining words, and then we used the last word as
the test set. The standard metric of the Spearman
correlation was computed to compare the vectors
of the Binder features predicted by the models and
the gold vectors of human ratings (note that only
one word was predicted for each run).



5 Results

The results in Table 4 reveal that embedding models
based on FastText and Skip Gram had highly sig-
nificant correlations with human scores, and that
the FastText vectors trained on Common Crawl
achieved higher scores than did any of the ones
trained on Wikipedia. However, the sparse PPMI
vectors had a much weaker performance, to the
extent that the scores were close to the regressors
initialized using the random vectors. Both the mod-
els with random and with PPMI vectors failed to
achieve significant correlations at the feature level.
Ridge Regression models were the most accurate,
particularly for the correlations at the feature level.
However, it should be said that the differences be-
tween the regressors trained with Skip-Gram and
FastText are small and not significant, also due to
the relatively small size of the samples.6

We also analyzed the features and the POS that
were predicted better, in comparison to Chersoni
et al. (2021)’s experiment using English data (see
Figure 1). Our analyses revealed that, similarly to
English, the predictions for the COGNITION do-
main were the best. This is not surprising, because
this domain is important for characterizing abstract
concepts, of which textual/linguistic information is
probably the prevailing source for human concept
learning (Vigliocco et al., 2009). Sensory and Mo-
tor features were also predicted at relatively high
correlations level, suggesting that many aspects
of experiential, first-hand information can still be
retrieved from linguistic data (Riordan and Jones,
2011). Finally, domains related to Spatial, Tempo-
ral (NUMBER and EVENT) and Attention turned
out to be most challenging ones, coherently with
the findings of Chersoni et al. (2021)’s experiment.

It can also be seen that, while English nouns
were predicted much better than other POS, similar
correlations were observed for nouns and verbs in
Chinese (adjectives were the most difficult in both
languages).

6 Conclusions

In this paper, we introduced Binder-style norms
for Mandarin Chinese, collected using a similar
method to the original study, and ran regression
experiments from embeddings to norms, showing
that the latter can be predicted with moderate to
high correlations with humans. Such an application

6p-values computed with Fisher’s r-to-z transformation.

is especially interesting because it allows to extend
the norms to large portions of the lexicon.

In the future, we plan to experiment with regres-
sion models based on contextualized vectors and to
run tests for zero-shot crosslingual norms predic-
tions, which could pave the way for the automatic
acquisition of norms in low-resource languages.
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