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Abstract

It has been argued that BERT “rediscovers the
traditional NLP pipeline”, with lower layers
extracting morphosyntactic features and higher
layers creating holistic sentence-level represen-
tations. In this paper, we critically examine
this assumption through a principle-component-
guided analysis, extracing sets of inputs that
correspond to specific activation patterns in
BERT sentence representations. We find that
even in higher layers, the model mostly picks
up on a variegated bunch of low-level features,
many related to sentence complexity, that pre-
sumably arise from its specific pre-training ob-
jectives.

1 Introduction

The Transformer architecture of neural networks
(Vaswani et al., 2017) shows state-of-the-art perfor-
mance on a range of NLP tasks (Wang et al., 2018,
2019). At the same time, the question of what
Transformer models learn exactly has motivated
a number of studies into the representations that
they construct (Rogers et al., 2020; Chi et al., 2020;
Papadimitriou et al., 2021), with an increasingly
popular answer being that they recreate the classi-
cal NLP pipeline of incremental abstraction, from
morphosyntax to semantics (Tenney et al., 2019;
Geva et al., 2021).

In this paper, we put this finding to the test, ask-
ing to what extent representations learned by pre-
trained BERT (Devlin et al., 2019) capture system-
atic meaning distinctions, as opposed to more shal-
low and potentially idiosyncratic properties. The
challenge of this question is that it is open-ended:
in order not to bias the analysis, we do not want to
rely on a set of categories that we a priori expect to
be relevant, in contrast to most probing approaches,
which correlate model representations with proper-
ties of inputs or performance metrics (see Section 2
for details).

Instead, we adapt the approach that Geva et al.
(2021) proposed to analyze decoder-only Trans-
former models with causal masking. They regard
feed-forward (FF) sublayers in such models as neu-
ral memory units and extract inputs that produce
maximal activations in a random subset of their
neurons. Manual analysis of these sets shows what
categorization of inputs arises inside the model.1

We extend the approach by Geva et al. in two
dimensions. First, we apply it to pre-trained bidirec-
tional encoder-only transformer models like BERT
(Devlin et al., 2019; Liu et al., 2019), which, unlike
causal LMs, do not have a specific token guaran-
teed to represent all of the input. To do so, we
analyze two types of “prominent” tokens: the CLS
pseudo-token, often used for whole-sentence rep-
resentation (Ma et al. 2019; even if its usefulness
for downstream tasks is debatable, cf. Reimers and
Gurevych 2019), and the first subword of the root
element in sentences annotated with Universal De-
pendencies (Nivre et al., 2020). We regard these
two tokens as good candidates for loci of high-level,
abstract representations of inputs learned by BERT.

Second, we replace the analysis of random neu-
rons by guided exploration. We find that embed-
dings of both CLS tokens and root tokens at up-
per layers are highly intercorrelated. Therefore we
propose to analyze major principal components of
activation matrices, in essence tracking influential
groups of highly congruent neurons.

We exploit this approach to provide an analysis
of the sentence patterns that BERT attends to. We
find that while lower levels of BERT are predictably
more attuned to lexical effects, activations in higher
levels track a wide range of idiosyncratic phenom-
ena from various linguistic levels, from individ-
ual wordforms and bigrams to lexical classes (rare

1An automated approach to finding features that trigger
neuronal activations was proposed by Rethmeier et al. (2020).
They assign probability distribution over features to different
neurons, which makes qualitative analysis impractical.



words), syntactic patterns (e.g., clauses with imper-
atives), and miscellaneous sentence types (recom-
mendations, incomplete sentences, short exclama-
tions). Overall, our results indicate that the typol-
ogy of sentences according to BERT is dominated
by what may be called natural classes (Mielke
et al., 2011) – clusters of objects that are character-
ized by a combination of values of several features –
with the embeddings showing little evidence of
principled semantic properties.2

2 Related Work

Probing transformers Two prominent avenues
of the study of Transformers in NLP are (i) prob-
ing analysis of internal representations of linguistic
inputs computed by the models (e.g., Vulić et al.,
2020; Pimentel et al., 2020; Belinkov, 2022) and
(ii) the analysis of the attention patterns that Trans-
formers converge on to compute these representa-
tions (Voita et al. 2019; Bian et al. 2021 and many
others). Both strategies rely on predefined arrays
of NLP tasks and features, which are either used as
benchmarks or are selected to highlight peculiari-
ties of models.

In contrast, Geva et al. analyze the representation
of the last unmasked token of the input sequence
in the causal language model by Baevski and Auli
(2019), which serves as the representation of the
whole prefix. By sampling neurons from feedfor-
ward sublayers of the model and manually inspect-
ing sentences that give rise to maximum values of
these neurons, they show that the latter recognise
different patterns in the input – with lower-layer
activations tuned to more superficial lexical and
syntatctic features and upper layers arguably more
tuned to semantics. We extend this approach to
bidirectional LMs.

3 Methods

3.1 Models and Data

All experiments are conducted based on the
bert-base-cased model provided by Wolf
et al. (2020). We use the train and development
splits of the Georgetown University Multilayer
(GUM) corpus (Zeldes, 2017), which is annotated
with Universal Dependencies. Together, the two
splits comprise 6,507 sentences.

2The code used for the analyses in this paper
is available at https://github.com/macleginn/
universe-of-utterances

3.2 Analysis Procedure
Token selection and representation We con-
sider two tokens that are promising candidates as
loci for high-level categories that we would expect
BERT pre-training to extract from inputs: the CLS
token and the dependency root of the sentence.

For the CLS token, used in pre-training for the
next-sentence-prediction (NSP) task, we concen-
trate on the output of the pooler layer: an additional
MLP is applied to the raw BERT encoding before
it is fed into the classifier head.

The root token does not play a special role
in pre-training, but we assume that, as it largely
corresponds to the head predicate of the clause, it
should attend to its various syntactic elements in
order to be selected correctly and to guide selec-
tion of other tokens.3 To analyze root tokens, we
experiment with the outputs of feedforward sublay-
ers in the 3rd, 6th, and 11th BERT layers, which
should roughly correspond to different layers of
generic linguistic abstraction attained by the model.
The final layer has been suspected of being too
task-specific (Kovaleva et al., 2019).

Analysis procedure Our analysis proceeds in
two steps for both types of tokens: (1) we gauge
the extent of redundancy in the representations,
given that BERT neurons are known to be highly
redundant in general (Dalvi et al., 2021). As we
will show in Section 4.1, CLS-token embeddings
are in particular highly redundant. Consequently,
(2) we identify the first 5 principal components
of embedding matrices and extract sentences with
maximum and minimum scores for these PCs to
manually to identify shared features, similarly to
Geva et al. (2021).

Hypotheses Under the theory that BERT redis-
covers the traditional hierarchy of NLP tasks during
pre-training (Tenney et al., 2019), we expect it to
be possible to interpret principal components as
bundles of linguistic features, with higher layers
moving from morphosyntax towards sentence se-
mantics. Alternatively, we can hypothesize that
BERT optimizes its representations primarily for
its pre-training objectives (next-sentence prediction
for CLS and masked-token prediction for root to-
kens), which would presumably not support a clean
interpretation in terms of a feature hierarchy.

3Another vector that is often used as a stand-in for the
whole sentence is the average of all tokens embeddings. As
by construction it cannot be tied to any particular sentence
component, it is less interpretable.

https://github.com/macleginn/universe-of-utterances
https://github.com/macleginn/universe-of-utterances


Figure 1: Correlations of neuronal activations in the
output of the pooler layer for CLS tokens (top) and
the output of the FF sublayer in layer 11 for root to-
kens (bottom). Rows and columns were reordered using
hierarchical clustering. More intense blue/red hues cor-
respond to stronger positive/negative correlations.

4 Results

4.1 Neural Redundancy and Major Principal
Components

As motivated above, we first assess the redundancy
of the pre-trained BERT embeddings for root to-
kens and CLS tokens (Dalvi et al., 2021). The
results, shown in the correlation plots in Figure 1,
reproduce the findings of earlier studies: there are
evident clusters of mildly correlated and anticorre-
lated neurons in root token embeddings, while
CLS neurons are extremely intercorrelated.

This redundancy motivates our use of principal-
components analysis (PCA) to reduce the dimen-

sionality of these representations. We find that
more than 50% of the variance in the output of the
pooler layer for CLS is explained by the first com-
ponent alone; the first three components explain
76% of the variance. In the case of FF sublayer
embeddings of root tokens, the first component
explains 25% of the variance in the 11th layer (36%
for the first 3 PCs together), but only 5% in the 6th
layer (10% for the first 3 PCs), and only 3% in the
3rd layer (8% for the first 3 PCs). Taken together,
this shows that as BERT progresses in its analy-
sis of the inputs, it aggressively discards more and
more information (Tishby and Zaslavsky, 2015).
Upper layers are less redundant than middle layers
(Dalvi et al., 2020) but might still be overparam-
eterized (although this may also be interpreted as
“spare capacity” for fine-tuning).

4.2 Principal Component-based Analysis
Sentences with maximum and minimum scores for
5 PCs for all studied settings can be found in the
paper’s code repository.4

4.2.1 CLS Tokens
Table 1 shows examples and statistics for the first 5
PCs of the CLS embedding space. The PCs may be
interpreted as as largely corresponding to sentence
complexity: they are noticeably correlated with
sentence length and somewhat correlated with the
number of rare words, operationalized as hapax
legomena in the test set. The particular patterns,
however, are highly varied.

Sentences with top scores on PC 1 are all short,
consist of bare NPs, and do not include rare words.
Sentences with minimal scores are, by contrast,
mostly long and include rare words, such as person
and place names.

Examples with minimal values for PC 2 are all
short conversational utterances, while sentences
with maximum values do not form a coherent
group.

Values for PC 3 demonstrates the highest cor-
relation with sentences length (0.57). Examples
with minimum values are all short quotes without
verbs of (reported) speech. Examples with maxi-
mum values seem all to be narrative sentences with
first-person-pronoun subjects.

Minimum values for PC 4 are mostly triggered
by sentences with an opening quote mark but with-
out a closing one, i.e. those starting a direct-speech

4https://github.com/macleginn/
universe-of-utterances

https://github.com/macleginn/universe-of-utterances
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PC SL HL Inputs w/ extremal values

1st -0.26 -0.1 [max] Estimated electricity use in residential sector; Second baseman / Short-
stop / Outfielder; High school career

2nd 0.37 0.37 [min] Yeah, I bet.; Yeah , that’s a good idea.; Probably.; Sure.; Nah, I’m
kidding.; Yeah , "think again" or something like that.; I have no idea.

3rd 0.57 0.22 [min] “With what?”; “Have you thought of that?”; "Why?"; "Are you ashamed
of her?"; “It’s not a joke.”; "No."
[max] I would find myself entering those crypts...; ...I came up with an individ-
ual story called Thad’s World Destruction...; We just want to be able to bring,
like she said, bring light into the entertainment...

4th 0.34 0.27 [min] We are a colony.; They’re going to implant a chip.; Go away!
5th -0.06 0.1 [min] THE END; Chapter Two: Master Lunre; 1 Harvest and prune

Table 1: CLS token analysis: Spearman correlations with measures of complexity (SL: sentence length, HL:
hapax-legomena counts per sentence) and examples inputs with extremal values (minimum / maximum).

segment. Sentences with maximum PC 4 values
are not easily interpretable.

Minimum values for PC 5 are shown by a varied
set of sentences many of which are chapter/section
names. Sentences with maximum values on this
axis do not afford a simple interpretation.

Overall, it is evident that CLS representations are
finely attuned to different kinds of sentences that
are likely to appear in particular contexts and are
thus informative for the next-sentence-prediction
task. Their semantic properties, which CLS tokens
are often assumed to be representations of, seem to
be largely irrelevant.

4.2.2 root Tokens

Layer 3 As expected, the FF sublayer of layer 3
is focused on shallow features. Sentences with min-
imum values for PC 1 are headed by the verb have.
Minimal values for PC 2 correspond to a combina-
tion of the verb form said and quote marks. Maxi-
mal values for PC 3 track non-third-person subject
and the verb know in the present tense, preferably
in combination.5 PC 4, despite being orthogonal
to previous components, assigns minimal values
to sentences headed with have and maximal val-
ues to sentences with said and quote marks. Sim-
ilarly, PC 5 assigns minimal values to sentences
with know but maximal values to sentences headed
by forms of go and come, including phrasal verbs
with widely differing semantics (go on, go through,
come home), which shows that this combination is
more collocational than semantic.

5Know your audience.; We know self-isolation works.

Layer 6 We expect Layer 6 to encode more ab-
stract features. However, PC 1 of root tokens on
layer 6 is highly negatively correlated with sentence
length (r = −0.62). Examples with high scores in-
clude one-word utterances (Alright.), dates, and im-
age captions of the form Image: [AUTHOR]. Mini-
mum values of PC 2 correspond to sentences with
forms of the verb say and a couple of other verbs
of speech as the head predicate. Maximum values
seem to be uninterpretable. Similarly, minimum
values of PC 3 correspond to sentences headed
by the verb have, while sentences with maximum
values are, with several exceptions, headed by be.
Small values for PC 4 are indicative of verbs of
creation (make, construct, build). Small values of
PC 5 again correspond to sentences with the verb
have. Sentences with high scores on this compo-
nent, however, are predominantly headed by a verb
in the imperative mood (see, know, come, tell, etc.).

Layer 11 We expect Layer 11 to represent high-
level semantic features. But again, PC 1 on layer
11 is also correlated with sentence length, this time
positively (r = 0.57). This time, sentences with
minimal scores have a rather specific form of tech-
nical instructions, including recipes.6 Minimal val-
ues of PC 2 seem to be connected to different kinds
of short sentences (You ass.; Absolutely great.;
She sighs.), incomplete phrases (They’re really —;
Melanie lies but —), and nominative heading-like
constructions (Basalt columns; Country-specific
advise). Minimal values of PC 4 correspond to
sentences headed with there’s, there is, it’s, and,

6Position a large mirror so you can check your positioning
and see what you’re doing.; Add six Skittles to 25 ml of vodka.



somewhat incongruously, I’m. PCs 3 and 5 do not
support an obvious interpretation.

Discussion Overall, the PCs of root token rep-
resentations on layer 3 are oriented towards fre-
quent verbs tokens, while layer 6 adds a mor-
phosyntactic category of imperatives, and layer 11
singles out a wide variety of sentence patterns an-
chored by features at the level of surface properties
(sentence length, presence of a particular verb), lex-
ical groups (verbs of creation), syntactic categories
(imperatives), or text types (technical instructions).
Sentence length remains a recurring feature, as it
is for the CLS token.

5 Conclusions

The good performance of Transformers on down-
stream tasks is often explained by their ability to
extract meaningful linguistic, generalizing features
from raw text (Tenney et al., 2019; Rogers et al.,
2020; Geva et al., 2021). When approaching this
problem from the point of view of a particular set
of tasks, however, there is always the danger that
good model performance is due to accidental co-
variates in the data that help models solve the task
without creating useful generalizations (Levy et al.,
2015; Gururangan et al., 2018).

Our analysis of loci in BERT that are highly
likely to aggregate linguistic generalizations about
the input sentence indicates that this problem might
indeed be present in this model as well: we find a
conspicuous absence of high-level generalizations
and prominent shallow features even in the final lay-
ers, arguably because they prove useful in solving
the cloze and next-sentence-prediction pre-training
tasks. Many of these are complexity-related, sim-
ilar to biases found in word embeddings (Wilson
and Schakel, 2015).

These findings arguably go some way towards
explaining the instability of the performance of dif-
ferent instances of BERT on the same downstream
task (McCoy et al., 2020) and of the variance in the
effects of BERT interventions (Sellam et al., 2021).
The question of whether it is possible to create a
pre-training task that would nudge the model to-
wards extracting high-level features remains open.

Limitations

One limitation of this study is that it demands man-
ual inspection of extracted sentences. While this
makes it possible to identify patterns in a way not

prejudiced by the downstream task or the available
annotations of the inputs, it also makes it harder
to provide quantitative arguments in favor of the
proposed analysis.

Another limitation is that we only focus on
maximum and minimum values of the principal
components when extracting diagnostic sentences.
This provides for a clear interpretation when PCs
can be construed as well-defined axes; however,
sometimes they appear to be “discontinuous”, with
different properties surfacing at the two extreme
points. This suggests that there may be other in-
teresting classes of inputs encoded by mid-range
values.
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