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Abstract 

Knowledge graphs (KGs) have become 

the standard technology for the 

representation of factual information in 

applications such as recommendation 

engines, search, and question-answering 

systems. However, the continual updating 

of KGs, as well as the integration of KGs 

from different domains and KGs in 

different languages, remains to be a major 

challenge. What we suggest here is that by 

a reification of abstract objects and by 

acknowledging the ontological distinction 

between concepts and types, we arrive at 

an ontologically grounded and language-

agnostic representation that can alleviate 

the difficulties in KG integration. 

 

1 Introduction 

Knowledge graphs are by now the standard 

representation of knowledge repositories that are 

used in various applications, such as search, 

recommendation engines, and question-

answering systems. While there are powerful KG 

tools, the semantic and conceptual side of KG 

technology is still partially ad-hoc. In particular, 

the continuous update and KG integration remain 

to be a challenge.  

A Knowledge graph (KG) is a graph structure 

that can be viewed as a set of triples e1, r, e2 

relating real-world entities e1 and e2 by a relation r 

to represent a real-world fact, as in the following 

examples: 

 

  RogerWaters, BornOn, 01/08/1955        (1) 

  PinkFloyd, StartedIn, London        (2) 

  BarakObama, LivesIn, WhiteHouse        (3) 

 

From the triples above that we might have in 

some knowledge graph KG1 we can immediately 

point to several issues that pose major challenges 

in constructing and maintaining KGs. We discuss 

these issues next. 

2 Alignment and Continuous Change 

Here are the main issues in the triples (1) through 

(3) above: First, in another knowledge graph KG2 

that we might want to integrate with KG1 there 

might be another Roger Waters where the two 

entities might or might not be the same and thus 

an entity alignment must occur with the triple in 

(1). Another issue here is that the triple in (2) uses 

“StartedIn” to represent the fact that the Pink 

Floyd band started in London. Another KG 

might, instead, use the relation “FormedIn” and a 

match and an alignment between the two 

relations is needed. Finally, the integration of 

KG1 with another KG might reveal that the triple 

in (3) is no longer valid and must thus be fused 

with new and updated information. At a 

minimum, then, the process of fusing together 

two or more KGs will first of all involve a 

tedious process of entity alignment (EA) (Zhang 

et. al., 2022), but more generally it will involve a 

process of continuous updating of information 

(Wang, et. al., 2022). Note that updating 

information and entity alignment both involve 

identifying if entities are the same (or not), where 

in one case we will perform a ‘merge’ and in the 

second an update.  

Clearly then entity alignment is the most basic 

operation in any KG integration, and as such it 

has received the most attention. To match an 

entity e1 in KG1 with an entity e2 in KG2 

embeddings in low dimensional space for both 

entities are constructed using neighboring 

information: related entities, immediate relations, 
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and attributes. Entities e1 and e2 are considered to 

have a match if their vector similarity is above a 

certain threshold. As such, different alignment 

techniques mainly differ in how the embeddings 

are constructed. In particular, they differ in what 

information is bundled in the embedding, and 

how far in the graph are other entities, relations 

and attributes are still considered to be in the 

“neighborhood”. Zhu et. al. (2021), for example, 

report that spreading entity information across all 

relations, gathering information, and bringing it 

back to an entity’s embedding, improves on 

embedding similarity and entity alignment.  In 

(Lin, Y. and Liu, Z. et. al., 2016) it is further 

suggested that including all attributes and their 

values will also improve on an entity’s 

embedding. Other approaches (e.g., Zhu et. al., 

2023) will also include, besides attribute values, 

all string information corresponding to entity, 

relation, and attribute names. In all these 

approaches the ultimate goal is to improve on the 

construction of entity embeddings, in the hope of 

improving on the accuracy of entity alignment 

(i.e., entity matching). See (Zhang, R. et. al., 

2022) for a good survey of various alignment 

techniques. 

3 Reifying Abstract Objects  

Regardless of the novelty and the progress made 

by various entity alignment algorithms, the 

accuracy of merging different knowledge graphs, 

especially ones that are continuously updated, 

will remain to be less than desired. In this section 

we will argue that the problem is to be handled 

not with constructing ever more reliable 

embeddings leading to more accurate alignments, 

but with how knowledge graphs are constructed 

in the first place. Specifically, we suggest that the 

answer lies in proposals that have been made in 

the study of semantics and formal ontology. In 

particular, we will appeal to conceptualism and 

the conceptual realism of Cocchiarella (2001), 

where we reify (or ‘object-ify’) abstract concepts 

in a manner that is consistent with our basic 

“cognitive capacities that underlie our use of 

language”. This is essentially an extension of 

Davidsonian semantics (Davidson, 1967; Larson, 

1998) where events are treated as entities, and is 

also in line with Moltmann’s (2013) arguments 

that the ontology of natural language admits 

references to “tropes”, which are particular 

instances of properties.  

Let us make all of this clear with an example. 

Consider the knowledge graphs in figure 1 where 

we are representing the facts expressed by “The 

musician Roger Waters was born in Great 

Bookham on 01/08/1955”. The knowledge graph 

in figure 1b has the same facts expressed in 

figure 1a but in an ontologically grounded and 

linguistically agnostic representation. First, note 

that instead of the ad-hoc naming of relations in 

1a (e.g, bornIn and bornOn), in 1b we have 

primitive and language-agnostic relations where 

events are entities (e.g., “Birth”) that have two 

essential properties, a time and a location and 

where these properties have specific values of 

specific types1. Note also that we are assuming 

here that these canonical names are done in the 

process of KG construction, and thus a ‘Birth’ 

event, regardless how it was named, will in the 

end translate to the same event. 

In our representation, therefore, everything is 

an entity and the relations come from a fixed set 

of primitive and linguistically agnostic set of 

relations (the set of primitive relations are shown 

in figure 2). How we come up with these 

relations is beyond the scope of this short paper 

but see Smith (2005) for a discussion. 

  

 
Figure 1: (a) A KG representing the facts expressed 

in “The musician Roger Waters was born in Great 

Bokham on 01/08/1955”; and (b) a language-

agnostic KG representing the same facts. 

 
1 While both ‘human’ and ‘teacher’ are concepts, a 
human is a type, while a teacher is not. In fact, a 
‘teacher’ is (ontologically, or metaphysically  an object 
of type human that we call (or label as) teacher when it 
is the agent of a teaching activity.   



 

 
 

Besides the primitive and linguistically agnostic 

representation, entities and attribute values in the 

knowledge graph of figure 1b are strongly-typed, 

where the types are assumed to exist in a strongly-

typed hierarchy along the lines suggested in Saba 

(2020). Note that by making all entities typed we 

resolve the issue of separating knowledge graphs 

into two parts, one that has continuously updated 

information (RogerWaters, LivesIn, London) and 

one that has more static conceptual information 

such as RogerWaters, IsA, Musician (see Hao et. 

al., 2019 for a discussion on this issue). 

 

 
 

 

Figure 2: The set of primitive and linguistically 

agnostic relations that are used in the knowledge 

graph. These are the only relations used and all other 

abstractions are entities (e.g., events, properties, 

states, etc. all of which are reified/object-ified), 

 

Moreover, entity alignment will now be more 

accurate since the embedding of [RogerWaters: 

Musician] will only match the same musician in 

another knowledge graph, even if the entity was 

labeled differently, e.g. [GeorgeRogerWaters: 

Musician]. Besides adding semantic constraints 

that will improve knowledge integration, types 

are language agnostic and thus, like primitive 

relations, are easy to translate across languages. 

In figure 3 we show the isomorphic Arabic and 

French equivalents of the KG in figure 1b above. 

4 Evaluation  

Aside from the simple alignment of knowledge 

graphs written in different languages or different 

domains, we show here how the ontologically 

grounded and linguistically agnostic 

representation helps in the problem of entity 

alignment. First, we construct embeddings for 

triples where a change is made in one of the 

entities or in the relation: 
 

e1 = EMBED(RogerWaters, LivesIn, London) 

e2 = EMBED(RogerWaters, PlaceOfResidence, London ) 

e3 = EMBED(RogerWaters, LivesIn, Chelsea ) 

e4 = EMBED(RogerWaters, PlaceOfResidence, Chelsea ) 

 

EMBED(e1, r, e2) returns an embedding that is the 

sum of the vectors of e1, r, and e2. In table 1 

below we show the cosine similarity cosim(ei, ej) 

for i, j = 1,2,3,4 and for i  j. The triples with a 

different entity (a different real-world fact) 

matched better than those with slightly different 

but semantically similar relation (i.e., same real-

world fact).  

 

 
 

 
 

Figure 3: Since entity names, types, attribute values, 

and primitive relations are language agnostic, there’s 

a straightforward automatic translation of the KG in 

figure 1b into isomorphic Arabic and French KGs. 
 

 

Similar results were obtained by changing various 

semantically similar relations (e.g., bornIn vs. 

placeOfBirth, etc.) 

The above shows that entity alignments across 

knowledge graphs would fail simply because of 

the ad-hoc labeling of relations in the knowledge 

graph. On the other hand, changing the location in 

the knowledge graph in 1b amounts to changing 

one embedding out of several that remain 

constant. In the example of figure 1b, a change in 



 

 
 

the location would result in a similarity of 0.688 

only, and the alignment would clearly fail, as it 

should. 
 

 

 
 

Table 1: Triples with different facts (locations) 

matched better than triples with the same facts 

(locations) but a relation that is worded slightly. 
 
 

That is, an entity that is a participant in a birth 

event that happened in London should not match 

with an entity that is a participant in a birth event 

that happened in Chelsea, regardless of the entity 

name. Note that this true even in knowledge 

graphs in different languages (see figure 3), 

assuming, of course, that the embeddings of 

[London : City] and [ لندن  : مدينة] have a good 

cosine similarity, as one would expect.  

5 Discussion  

One important aspect to the representation we are 

suggesting is that it is language agnostic. This we 

claim is based on the fact that our representation 

has entities and primitive relations between them 

and that both of these are language agnostic. Thus 

the claim of universality is based two 

assumptions: (i) we are assuming that entities, 

including abstract entities such as those 

corresponding to properties, events, states, etc. are 

language-agnostic; (ii) we are assuming that our 

primitive relations (see figure 2) are also language 

agnostic. If both of these assumptions are correct, 

then our representation is language-agnostic, and 

the only remaining question would be “how 

universal are the primitive relations in figure 2?” 

A final answer to this question requires further 

experimentation.  

Another important issue we could not discuss 

here for lack of space are the types that are 

associated with every entity and attribute value. 

These types are assumed to exist in a hierarchy of 

types that must also be language agnostic (that is, 

we are assuming that “the types of things we talk 

about/express facts about” are the same across 

languages). Admittedly, however, this claim might 

not be uncontroversial and further work needs to 

be done in this regard, although we believe the 

work of Saba (2020) is a step in the right 

direction. Another issue that should also be 

addressed is related to the mapping from natural 

language to our representation. As noted to us by 

one of anonymous reviewers, a fact such as "John 

sold the car to Bill” should, in theory, translate 

into the same sets of relations in the KG as the 

fact “Bill bought the car from John”. While in 

both cases we will  have a language agnostic 

representation with reified abstract objects for the 

‘buying’ and ‘selling’ events where Bill and John 

are participants, these two facts will only be 

equivalent if there were some meaning postulate 

that relates the ‘selling’ and ‘buying’ events. 

6 Concluding Remarks 

In this short paper we suggested an ontologically 

grounded and linguistically agnostic 

representation for knowledge graphs. This 

representation, we believe will solve the major 

challenges facing knowledge graphs today, 

namely the difficulty in continuous updating of 

factual information (which requires static 

conceptual information to be separated from the 

more dynamic information), and the difficulty of 

knowledge graph integration which requires very 

accurate entity and relation alignment. We argued 

that our representation offers a solution to these 

(essentially semantic) problems. 

A final remark we would like to make is related 

to an excellent point made by one the anonymous 

reviewers, name that the representation and the 

method we propose will work if the construction 

of every KG follows our methodology. This is 

true, and so in essence the representation we are 

suggesting can be thought of as a new standard 

for a semantically rigorous knowledge graph 

methodology. Although this is part of future work, 

this will entail building a natural language 

interpreter that will ensure the translation of every 

KG into the canonical and language agnostic 

representation suggested in this paper. 
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