
Error Exploration for Automatic Abstract Meaning Representation Parsing

Maria Boritchev, Johannes Heinecke
Orange Innovation

2 avenue Pierre Marzin
22307 Lannion cedex, France

{maria.boritchev,johannes.heinecke}@orange.com

Abstract

Following the data-driven methods of evalua-
tion and error analysis in meaning representa-
tion parsing presented in (Buljan et al., 2022),
we performed an error exploration of an Ab-
stract Meaning Representation (AMR) parser.
Our aim is to perform a diagnosis of the types
of errors found in the output of the tool in
order to implement adaptation and correction
strategies to accommodate these errors. This
article presents the exploration, its results, the
strategies we implemented, and the effect of
these strategies on the performances of the tool.
Though we did not observe a significative rise
on average in the performances of the tool, we
got much better results in some cases using our
adaptation techniques.

1 Introduction

Semantic parsing of natural language is the task
of extracting a formal meaning structure from a
natural language sentence. Semantics of natural
languages can be formalised in various ways, see
for instance Bos (2011) and more recently Žabokrt-
ský et al. (2020) for overviews; semantic pars-
ing can be performed from any natural language
into any of the semantic formalisms. One of
these formalisms, Abstract Meaning Representa-
tions (AMR, Banarescu et al. (2013)) has been
widely used in the context of deep semantic parsing
of English and up to at least ten other languages,
including French, German, Spanish, Italian, and
Polish. There are two main types of approaches to
multilingual AMRs: either the AMR graphs con-
cepts are consistent with the target language (e.g.
French concepts for French sentences), or the pars-
ing results in an AMR graph with English concepts
(Propbank-based). In this paper, we work in the
scope of the latter approach. Machine semantic
parsing of English has reached high-quality results,
scoring over 83% Smatch score (Cai and Knight,

2013)1 for the state of the art approaches (Yu and
Gildea, 2022). In this context, we want to focus on
the remaining 17%, and investigate both why the
parser performs badly on these inputs and why the
evaluation techniques would consider these parses
as bad ones. We have limited our error explorations
to languages we were familiar with; in particular,
expert annotators familiar with Chinese should be
involved in a follow-up study covering Chinese, for
which a large amount of AMR annotation has been
done. Machine AMR parsing works well, mak-
ing the cases where it performs badly particularly
interesting both linguistically and for deep learn-
ing studies. To make AMR parsing truly usable
and reliable for real-life applications such as auto-
matic summarization (Huang et al., 2022), ques-
tion/answer generation (Deng et al., 2022), and
neural machine translation (Li and Flanigan, 2022)
we need to be able to trust it. We believe that this
trust will come from a deep understanding of both
our models and our data. The work presented in
this article takes roots in explainability of artificial
intelligence and computational linguistics. We con-
duct an error analysis and annotation exploration of
the 50 worst examples from development corpora.
We work in a multilingual context, on English (EN),
French (FR), German (DE), Spanish (ES), Italian
(IT), and Polish (PL). Our aim in this article is to
share the error categories that we observed along
with our attempts to remediate these errors, and
the results of these attempts, in particular in terms
of (non-significant) effects on the Smatch score.
While our work constitutes a negative proof of con-
cept, we still think it is an important contribution to
share in the field to help to constitute a baseline for
such adaptation techniques and encourage research
and dialogues around them.

1A Python package is available at https://github.com/
snowblink14/smatch/

https://github.com/snowblink14/smatch/
https://github.com/snowblink14/smatch/

2 AMR Parsing

AMR parsing was explicitly developed for English
only. Its goal was to represent sentences through
relations between predicates and their semantic
arguments. These representations are now machine-
generated and have been extended to at least ten
other languages.

Abstract Meaning Representations In AMR,
each sentence is represented with a rooted, directed,
acyclic graph with labelled edges, where nodes are
instances, concepts or literals, and edges are rela-
tions (figure 1). A single AMR graph can represent
several natural language sentences as AMRs do not
map words in a sentence to parts of the graph, but
rather represent the semantic links that appear in
the sentence or sequence of sentences. The goal
of AMR representations is to abstract from syn-
tactic constraints: sentences that have the same
meaning but different formulations are represented
with the same AMR. The representations are based
on frames from PropBank (Kingsbury and Palmer,
2002), and the concepts and relations are either
extracted from PropBank or English lemmas.

(h / hear-01 # “is a” relation (instantiation)
:ARG0 (w / woman) # relation
:ARG1 (c / cat

:quant 2)) # attribute

Figure 1: AMR graph for “the woman heard two cats”.

Machine AMR Parsing The AMR parser we
explore is based on AMRlib2 for which the un-
derlying language model T5 was changed for the
multilingual MT5. We only used the T5/MT5 mod-
els since at the time we began our study they gave
the best results (on English). AMRlib is based on
a seq2seq model and outputs a “raw” AMR graph
(without instance variables). The variables are in-
serted in a postprocessing step. If the raw graph
contains too many errors (e.g. missing or addi-
tional quotes or parentheses), the postprocessing
step loops through the raw graph until it has found a
clean beginning. In this case, the final AMR graph
lacks some instances and relations.

Data The training data for our parser is based on
the English corpus of AMR 3.0 (LDC2020T023).
These corpora are mainly based on news reels. To
obtain multilingual parsing, we trained our modi-
fied AMRlib using MT5 (instead of the monolin-

2https://github.com/bjascob/amrlib
3https://catalog.ldc.upenn.edu/LDC2020T02

IT ES DE FR PL
73.9 74.4 71.0 74.0 72.2

Table 1: Results for multilingual parsing evaluation.

gual T5) on data obtained by machine translation of
English data to French, German, Spanish, Italian,
and Polish. To reinforce the training, the parser
was trained for each language on both corpora in
English and in the target language. The AMR test
corpus has been translated manually into German,
Italian, Spanish, and Chinese (LDC2020T07). We
evaluated on the first three of these and added the
machine-translated versions for French and Polish
since there is no manual translation of the sentences
of the test corpora for these languages available.
The results of our evaluation are listed in table 1.

3 Error Exploration

We performed an error analysis of the parser’s out-
puts. We identified and implemented two strategies
based on this analysis. Our results show improve-
ments in the parsing results that are qualitatively in-
teresting but quantitatively not significant enough.

Our analysis was done on the development cor-
pus of AMR 3.0 (LDC2020T02), as we wanted to
avoid introducing any bias in our study by using
the test corpus. The sentences were machine trans-
lated into the given language, parsed using a model
trained on the machine-translated training corpus,
and then evaluated using the Smatch Python pack-
age against the gold development corpus. Then,
the sentences were ranked by worst Smatch score,
and the 50 first ones were annotated. Table 2 shows
the Smatch scores for the first and 50th worst sen-
tences, per language.

Smatch EN FR DE ES IT PL
worst 25.0 22.2 13.3 13.3 20.7 11.8
50th 60.9 49.6 46.8 48.9 49.5 47.4

Table 2: Worst and 50th worst Smatch per language.

3.1 Error Categories
We identified seven categories of errors in the de-
velopment data: (1) translation, (2) coordination,
(3) input-based errors, (4) incomplete output, (5)
reification, (6) errors in gold annotation, (7) other.
These categories are listed in the order used for the
exclusive annotation: if an error is annotated as a
translation one, we did not try to annotate it further
as belonging to another category as well.

https://github.com/bjascob/amrlib
https://catalog.ldc.upenn.edu/LDC2020T02

(1) Translation Translation-based errors have
different origins: some of these come from wrong
translations from English to the target language,
which yields a bad parsing; others come from sen-
tences for which the wordings in English and in
the target language are structurally or lexically very
different. Note that for DE, ES, and IT we used
the official translations provided by LDC, so for
these languages translation errors are of the second
category. Some of the sentences contain technical
terms which are badly or inexactly translated. The
translation can also contain hallucinations because
of the underlying seq2seq model, which adds parts
that were not in the original sentence to the trans-
lated one. Lastly, the translation introduces syn-
onymy in the AMR concepts that are used to build
the graph. For instance, the English verb break was
translated correctly into French casser, however,
the AMR parser uses the concept smash-01 instead
of break-01 found in the gold AMR graph.
Example: “This is worth pondering a little!” /
“Cela mérite réflexion un peu !”

gold predicted (on French)
w/worth-02

t/this

:ARG1 p/ponder-01

:ARG2

:ARG1

l/little

:mod

d/deserve-01

t/that

:ARG0 t2/think-01

:ARG1

:ARG1

b/bit

:degree

(2) Coordination This category corresponds
to several subtypes of errors, including sen-
tence coordination/multiple sentences, that can
yield multi-sentence annotations, trigger and-
concepts or not be annotated at all. First, we
labelled here the errors that have to do with a
bad parsing of conjunctions such as “and” or
“but”. Then, the ones that have to do more
largely with sentence segmentation: sentences
which were split incorrectly in two graphs linked
with the multi-sentence-concept, or, on the con-
trary, two sentences which were merged using the
and-concept.
Example: “There is an epidemic of fever and diar-
rhea.”

gold predicted
a/and

e/epidemic

:op1

e2/epidemic

:op2

f/fever

:mod

d/diarrhea

:mod

e/epidemic

a/and

:topic

f/fever

:op1

d/diarrhea

:op2

(3) Input There are errors in the input corpus,
which can in turn yield errors in the output. In
particular, some of the input sentences are too long
for the model; when confronted with too long sen-
tences, the model cuts off the sentence after the
maximal input length has been reached, yielding
incomplete AMR graphs. For Romance languages
(FR, ES, IT), translated sentences are generally
longer than the EN original ones. We also iden-
tified several cases in which the input sentence
contains a misspelt word, or a word that is not in
the model’s vocabulary, or data in a format that is
not identified by the model (ex: date), or named
entities not recognized by the model as such.
Example: “Thaks.”

t/thank-01 p/person

n/name

:name

"Thaks"

:op1

(4) Incomplete output Sometimes, we cannot
identify any of the first three categories of errors,
and the output AMR graph is still incomplete.
Example: “China can not be so ‘Doctrine of the
Mean’ ” / “Chiny nie mogą być więc ‘Doktryną
środka’ ”

gold (left) & predicted on Polish
p/possible-01

-

:polarity

t2/thing

:ARG1

n2/name

:name

s/so

:degree

c/country

:domain

"Doctrine"

:op1

"of"

:op2

"the"

:op3

"Mean"

:op4

n/name

:name

"China"

:op1

ii/infer-01

p/possible-01

:ARG1

-

:polarity

h/have-mod-91

:ARG1

c/country

:ARG1

m/middle

:ARG2

n/name

:name

c2/critical-02

:ARG1-of

"China"

:op1

(5) Reification In the AMR 3.0 documentation,
some relations (e.g. :location) can be reified
into concepts (e.g. be-located-at-91), in order
to be able to add a third argument. A reification
without additional relations is considered seman-
tically equivalent to the non-reified relation, thus
in the gold annotations, both types of annotations
are used. However, the standard evaluation script
Smatch does not detect these equivalencies and
produces a bad score.
Example: “the school is on marcadieu street”

b/be-located-at-91

s/school

:ARG1

s2/street-address-91

:ARG2

r/road

:ARG2

n2/name

:name

"Marcadieu"

:op1

"Street"

:op2

s/school

s2/street

:location

n/name

:name

"Marcadiu"

:op1

"Street"

:op2

(6) Gold In very few cases, the drop in the
Smatch score comes from a mistake in the gold
annotation and not from one in the parser’s output.
Example: “Legally, there are two remedies.”

t/thing

2

:quant

r/remedy-01

:ARG2-of

l/law

:mod

r/remedy-01

2

:quant

l/legal-02

:ARG1-of

(7) Other After establishing the 6 previous cat-
egories and conducting the annotation, we found
other mistakes, which did not constitute a category
on their own and could not be assigned to any of
the previous categories. These errors have been
annotated in this last category.
Example: “That was one hell of an over-reaction.”/
“To była cholernie przesadna reakcja.”

o3/overreact-01

o2/one

:mod

h/hell

:mod

t/that

:domain

r/react-01

t/that

:ARG1

o/over-03

:ARG1-of

d/damn

:degree

Table 3 shows the distribution of errors across
these categories according to the annotation we per-
formed on the 50 examples with the worst Smatch
scores, for each language. Coordination is the most
important error category for English and French;
for the other languages, it is the second most im-
portant one after Translation. Then come the cate-
gories Input and Reification. Our annotation shows
that the 2 other categories (not counting Other) are
not significant enough with respect to the worst
Smatch score examples.

3.2 Adaptation Strategies and Results

Errors in the input are difficult to correct, as we
would risk overfitting and even worsening the situa-
tion when our parser would be confronted with new
input mistakes outside the kind it would have been
prepared to adapt to. Thus, we focused on coordina-
tion and reification phenomena for the development

of our adaptation and correction strategies.

Reification To check whether the comparison
between reified and non-reified relations impacts
the evaluation, we wrote a script that reified every
occurrence of reifiable relations in both the gold
and system output of the development corpus and
checked whether the Smatch score increases. How-
ever, the impact is minimal, instead of a Smatch
score of 85.4, after reification we got 86.0 for EN.

Syntax-based Sentence Splitting Since we ob-
served that long sentences are cut off when the
number of tokens is bigger than the MT5 model can
handle, we decided to test two sentence-splitting
methods. We parsed all sentences of the develop-
ment corpus with a dependency parser trained on
Universal Dependency data4. In the first test, we
focused on coordination by splitting sentences at
the parataxis dependency relation (see black on
white and white on black parts in figure 2). We
then processed each partial sentence and merged
the AMR graphs using the multi-sentence con-
cept, e.g.:
original sentence: “The first stage splashed down
in the Sea of Japan, the second stage crossed the
main island of Japan.”
partial sentences: (1) “The first stage splashed
down in the Sea of Japan” (2) “the second stage
crossed the main island of Japan.”

The first stage splashed down ... , the second stage crossed ...

det

amod nsubj

root

advmod

...

punct
det

amod nsubj

parataxis

punct

Figure 2: Dependency syntax tree for adjuncts (trun-
cated).

For the second test, we extracted relative clauses
(white on black in cf. figure 3) from the sentence
(black on white in 3), replaced the relative pronoun
(“who”) by the head of the relative clause (to have
a complete sentence). We then ran the AMR parser
on each partial sentence and recombined the AMR
graphs by merging the variables of the head of the
relative clause (here “man”) in both AMR graphs.
original sentence: “The man who saw the dog was
afraid”
partial sentences: (1) “the man was afraid” (2) “the
man saw the dog”

4https://universaldependencies.org

https://universaldependencies.org

Language Translation Coord. Input Incomplete output Reification Gold error Other
EN n.a. 21 (42%) 6 (12%) 0 (0%) 7 (14%) 3 (6%) 13 (26%)
FR 13 (26%) 14 (28%) 1 (2%) 0 (0%) 10 (20%) 2 (4%) 10 (20%)
DE 32 (64%) 7 (14%) 7 (14%) 3 (6%) 0 (0%) 0 (0%) 1 (2%)
ES 25 (50%) 7 (14%) 7 (14%) 3 (6%) 0 (0%) 1 (2%) 7 (14%)
IT 26 (52%) 12 (24%) 3 (6%) 5 (10%) 0 (0%) 0 (0%) 4 (8%)
PL 22 (44%) 14 (28%) 1 (2%) 1 (2%) 5 (10%) 2 (4%) 5 (10%)

Table 3: Results of error annotations of the 50 first parses with the worst Smatch scores, per language.

The man who saw the dog was afraid

det

nsubj

nsubj

acl:relcl

det

obj

cop

root

Figure 3: Dependency syntax tree for relative clause.

individual AMR graphs:
(v1 / fear-01

:ARG0 (v2 / man))
(v3 / see-01
:ARG0 (v4 / man)
:ARG1 (v5 / dog))

joined graph (instances v2 and v4 merged into m):
(f / fear-01

:ARG0 (m / man
:ARG0-of (s / see-01

:ARG1 (d / dog))))

Even though for some complex sentences we got
much better results with this splitting technique, for
others this resulted in additional errors. On average
the results in terms of Smatch score did not change.

4 Related Work

There are to our knowledge not many publica-
tions presenting systematic explorations of ma-
chine AMR parsing mistakes for the purpose of im-
proving the explored tool. This observation might
come from a publication bias, as a scientific com-
munity, we tend to publish positive results over
negative ones. In Buljan et al. (2022), the authors
present a discussion of methodological choices for
diagnostic evaluation and error analysis in the con-
text of four semantic parsers, two of which out-
put AMR graphs. This article also explores one
of the alternatives to Smatch, developed for sev-
eral semantic representations of language (not only
AMR), as part of the meaning representation pars-
ing task. Damonte et al. (2017) presents another
way of measuring the quality of automatic parses
by using Smatch to compute more fine-grained
metrics. Stemming from this work, Szubert et al.
(2020) focuses on reentrancy phenomena in AMR
graphs, categorizes their types, and shows results
of experiments performed via an oracle correcting

these errors, augmenting the overall parsing per-
formance by 5%. Smatch is also being questioned
in a multilingual context. In Wein and Schneider
(2022), the authors argue for the necessity of a mul-
tilingual AMR evaluation metric and present a mul-
tilingual adaptation of S2match called XS2match.
The work presented in our article is inspired by
the previous work of the same authors (Wein and
Schneider, 2021); in this work, they annotate trans-
lation divergences between a corpus of English and
a corpus of Spanish data, grounding their annota-
tion schema in AMR and labelling type and cause
of divergences.

5 Discussion and Conclusion

As shown in table 3, the errors for the AMR graphs
on languages other than English mostly concern
the machine translation. Either the (English) input
had typos (like “thaks” for “thanks”) or contained
some named entities spelt in lowercase without any
quotes which were translated literally into the target
languages and not identifiable as named entities
thereafter. The most frequent translation-related
error is when a concept slightly differs from the
concept in the gold. Even though we can consider
these errors as minor, Smatch cannot identify close
synonyms and classifies these differing concepts as
plain errors.

The next steps for our research are twofold. On
one hand, we will continue the diagnostic of our
approach, in particular for languages other than
English, by evaluating our parser using scores such
as XS2match and exploring the errors that get the
lower scores; conjointly, as translation issues were
majoritary in our analyses, we will investigate how
manual correction of translations can improve the
parsing’s quality. On the other hand, we will in-
vestigate other approaches for our parser. Several
categories of errors we diagnosed come from the
seq2seq method and from the machine translation
tools we use to produce the non-English corpora.

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th linguis-
tic annotation workshop and interoperability with
discourse, pages 178–186.

Johan Bos. 2011. A survey of computational seman-
tics: Representation, inference and knowledge in
wide-coverage text understanding. Language and
Linguistics Compass, 5(6):336–366.

Maja Buljan, Joakim Nivre, Stephan Oepen, and Lilja
Øvrelid. 2022. A tale of four parsers: methodological
reflections on diagnostic evaluation and in-depth er-
ror analysis for meaning representation parsing. Lan-
guage Resources and Evaluation, 56(4):1075–1102.

Shu Cai and Kevin Knight. 2013. Smatch: an evaluation
metric for semantic feature structures. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 748–752, Sofia, Bulgaria. Association
for Computational Linguistics.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for abstract meaning
representation. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 536–546, Valencia,
Spain. Association for Computational Linguistics.

Zhenyun Deng, Yonghua Zhu, Yang Chen, Michael Wit-
brock, and Patricia Riddle. 2022. Interpretable amr-
based question decomposition for multi-hop question
answering. In Proceedings of the Thirty-First Inter-
national Joint Conference on Artificial Intelligence
(IJCAI-22), pages 4093–4099, Vienna, Austria.

Kuan-Hao Huang, Varun Iyer, Anoop Kumar, Sriram
Venkatapathy, Kai-Wei Chang, and Aram Galstyan.
2022. Unsupervised syntactically controlled para-
phrase generation with Abstract Meaning Represen-
tations. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 1547–1554,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Paul Kingsbury and Martha Palmer. 2002. From Tree-
Bank to PropBank. In Proceedings of the Third In-
ternational Conference on Language Resources and
Evaluation, Las Palmas, Canary Islands - Spain. Eu-
ropean Language Resources Association.

Changmao Li and Jeffrey Flanigan. 2022. Improving
neural machine translation with the Abstract Mean-
ing Representation by combining graph and sequence
transformers. In Proceedings of the 2nd Workshop
on Deep Learning on Graphs for Natural Language
Processing (DLG4NLP 2022), pages 12–21, Seattle,
Washington. Association for Computational Linguis-
tics.

Ida Szubert, Marco Damonte, Shay B Cohen, and Mark
Steedman. 2020. The role of reentrancies in Abstract
Meaning Representation parsing. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 2198–2207.

Shira Wein and Nathan Schneider. 2021. Classifying
divergences in cross-lingual AMR pairs. In Proceed-
ings of The Joint 15th Linguistic Annotation Work-
shop (LAW) and 3rd Designing Meaning Represen-
tations (DMR) Workshop, pages 56–65, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Shira Wein and Nathan Schneider. 2022. Account-
ing for Language Effect in the Evaluation of Cross-
lingual AMR Parsers. In Proceedings of the 29th
International Conference on Computational Linguis-
tics, pages 3824–3834, Gyeongju, Republic of Korea.
Association for Computational Linguistics.

Chen Yu and Daniel Gildea. 2022. Sequence-to-
sequence AMR Parsing with Ancestor Information.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 571–577, Dublin, Ireland.
Association for Computational Linguistics.

Zdeněk Žabokrtský, Daniel Zeman, and Magda
Ševčíková. 2020. Sentence meaning representations
across languages: what can we learn from existing
frameworks? Computational Linguistics, 46(3):605–
665.

https://aclanthology.org/2022.findings-emnlp.111
https://aclanthology.org/2022.findings-emnlp.111
https://aclanthology.org/2022.findings-emnlp.111
https://doi.org/10.18653/v1/2022.dlg4nlp-1.2
https://doi.org/10.18653/v1/2022.dlg4nlp-1.2
https://doi.org/10.18653/v1/2022.dlg4nlp-1.2
https://doi.org/10.18653/v1/2022.dlg4nlp-1.2

